Expectation Particle Belief Propagation
نویسندگان
چکیده
We propose an original particle-based implementation of the Loopy Belief Propagation (LPB) algorithm for pairwise Markov Random Fields (MRF) on a continuous state space. The algorithm constructs adaptively efficient proposal distributions approximating the local beliefs at each note of the MRF. This is achieved by considering proposal distributions in the exponential family whose parameters are updated iterately in an Expectation Propagation (EP) framework. The proposed particle scheme provides consistent estimation of the LBP marginals as the number of particles increases. We demonstrate that it provides more accurate results than the Particle Belief Propagation (PBP) algorithm of [1] at a fraction of the computational cost and is additionally more robust empirically. The computational complexity of our algorithm at each iteration is quadratic in the number of particles. We also propose an accelerated implementation with sub-quadratic computational complexity which still provides consistent estimates of the loopy BP marginal distributions and performs almost as well as the original procedure.
منابع مشابه
Expectation Propagation for approximate Bayesian inference
This paper presents a new deterministic approximation technique in Bayesian networks. This method, “Expectation Propagation,” unifies two previous techniques: assumed-density filtering, an extension of the Kalman filter, and loopy belief propagation, an extension of belief propagation in Bayesian networks. Loopy belief propagation, because it propagates exact belief states, is useful for a limi...
متن کاملLoop corrections for message passing algorithms in continuous variable models
In this paper we derive the equations for Loop Corrected Belief Propagation on a continuous variable Gaussian model. Using the exactness of the averages for belief propagation for Gaussian models, a different way of obtaining the covariances is found, based on Belief Propagation on cavity graphs. We discuss the relation of this loop correction algorithm to Expectation Propagation algorithms for...
متن کاملTree-structured Approximations by Expectation Propagation
Approximation structure plays an important role in inference on loopy graphs. As a tractable structure, tree approximations have been utilized in the variational method of Ghahramani & Jordan (1997) and the sequential projection method of Frey et al. (2000). However, belief propagation represents each factor of the graph with a product of single-node messages. In this paper, belief propagation ...
متن کاملApproximate Expectation Maximization
We discuss the integration of the expectation-maximization (EM) algorithm for maximum likelihood learning of Bayesian networks with belief propagation algorithms for approximate inference. Specifically we propose to combine the outer-loop step of convergent belief propagation algorithms with the M-step of the EM algorithm. This then yields an approximate EM algorithm that is essentially still d...
متن کاملStructured Message Passing
In this paper, we present structured message passing (SMP), a unifying framework for approximate inference algorithms that take advantage of structured representations such as algebraic decision diagrams and sparse hash tables. These representations can yield significant time and space savings over the conventional tabular representation when the message has several identical values (context-sp...
متن کامل